## Angles and Astronomy

#### Kim Coble

San Francisco State University

Dept. of Physics and Astronomy

#### Measuring Angles

• Fist at arms length:

10 degrees

• Finger:

1 degree

• Full Moon:

1/2 degree

Hubble Ultra Deep Field:

1/20 degree

What is a galaxy anyway?





#### Activity: angular size and distance

- The size that someone or something appears to be is measured as an angle.
- Find a partner a different height from yourself.
- Measure your partner's angular height at different distances.

Predict: what trends do you expect?

## Discuss with your partner (handout)

- 1. What trends do you notice in the above apparent angular height measurements?
- 2. Did the actual heights change?
- 3. From your graph, predict the apparent angular height of your partner at a distance of 30 tiles (feet). Check your predictions by doing the measurement.

#### Relationship between distance, size, and angular size

- What relationships did we notice in the activity?
  - The greater the distance, the <u>smaller</u> the angle.
  - This is a/an <u>inverse</u> relationship.
  - Assumption: we know the size of the object
- If the distance to the object is large (compared to its size) we can use the small angle formula:

$$a = S/d$$

If an object is 3 times farther away, it will look
 3 times smaller

#### Determining distance using triangles

If we know the size S and measure the angle a, we can calculate the distance d

$$tan(a) = S/d$$

tan (a)  $\sim$  a for small angles (large distances)

$$a = S/d$$

$$\rightarrow$$
 d = S/a



## Discuss with your partner (handout)

- 1. Suppose that you had a friend the same height as your lab partner. If you see them on the street, how would you figure out how far away they are using this method?
- 2. Suppose you used five different people at five different distances. How would this change your results?

3. Under what circumstances does this method work for measuring the distances to objects?

#### Galaxies

- Below are all large spiral galaxies of the same inherent size.
- Rank them by distance from closest to farthest:



## Distance to galaxies?

 What if I had different types of galaxies? Would this method work?











## Galaxy NGC 3627

Pretend we are looking at this galaxy through a window.



- When you look out at the sky you can't tell the distance to an object, you only see it span a certain angle.
- Measure the angular size of galaxy NGC 3627.

## Galaxy NGC 6643

Pretend we are looking at this galaxy through a window.



- When you look out at the sky you can't tell the distance to an object, you only see it span a certain angle.
- Measure the angular size of galaxy NGC 6643.

## Finding the distance to a galaxy

- Galaxy NGC 3627 is 36 million light-years away.
- A light-year is 6 trillion miles.
- Galaxy NGC 6643 is the same inherent size as NGC 3627.

What is the distance to NGC 6643?

#### Measurement accuracy and uncertainty

- Accuracy of your measurements with fist?
- Other influences?
- How might we improve upon this?

#### Measuring astronomical distances

# Can't go out with a tape measure — have developed other methods:

- <u>Standard Ruler</u>: If we know how big an object is inherently, we can tell how far away it is, because the farther away something is, the <u>smaller</u> it looks.
- Standard Candle: If we know how bright an object is inherently, we can tell how far away it is, because the farther away an object is, the dimmer it looks.
- <u>Parallax</u>: Extension of depth perception.

#### Distance ladder

 The chain of measurements that allows us to determine farther and farther distances:

